Preliminary Communication

Übergangsmetall-substituierte Acylphosphane und Phosphaalkene

XX. * Dipolare [3 + 2]-Cycloadditionen eines Acetylendicarbonsäureesters an die Metallophosphaalkene $(\eta^{5}-C_{5}Me_{5})(CO)_{2}Fe-P=C(R)SiMe_{3}$ $(R = Ph, SiMe_{3})$

Lothar Weber und Annette Rühlicke

Fakultät für Chemie der Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld (Deutschland)

(Eingegangen den 22. November 1993)

Abstract

The metallo-phosphaalkenes $(\eta^5-C_5Me_5)(CO)_2FeP=C(R)(SiMe_3)$ (Ia: R = SiMe₃, Ib: R = Ph) and MeO₂C-C=C-CO₂Me undergo a dipolar [3+2]-cycloaddition to afford the metallo-heterocycles [$(\eta^5-C_5Me_5)(CO)Fe-C(O)-C(CO_2Me)=C(CO_2Me)-P=C(R)SiMe_3$] (IIIa,b) with exocyclic P=C double bonds.

Key words: Phosphaalkene; Iron; Trimethylsilyl

1. Einleitung

Im Rahmen unserer Untersuchungen zur Synthese und chemischen Reaktivität von Metallfunktionalisierten Phosphaalkene (Metallophosphaalkenen) haben wir kürzlich über die Herstellung von η^3 -Phosphaallylkomplexen aus (η^5 -C₅Me₅)(CO)₂FeP=C-(SiMe₃)₂ (Ia) [2] und Me₂S(O)=CH₂ berichtet [3]. Mit Isocyaniden geht Ia eine [2 + 1]-Cycloaddition unter Bildung von 1-Metallo-2-iminophosphiranen ein [4]. Eine [2 + 2]-Cycloaddition wird zwischen (η^5 -C₅Me₅)-(CO)₂FeP=C(NMe₂)₂ und Fumarsäuredimethylester bzw. Fumarodinitril beobachtet [1].

Wir berichten hier über die Umsetzung von Ia und $(\eta^5 - C_5 Me_5)(CO)_2 FeP=C(Ph)SiMe_3$ (Ib) [2b] mit Acetylendicarbonsäuredimethylester (II), nachdem in früheren Arbeiten gezeigt werden konnte, daß Metallodiphosphene [5], aber auch Metallophosphane [6]

mit Alkinen unter formaler [3 + 2]-Cycloaddition fünfgliedrige Metalloheterocyclen bilden.

2. Präparative Ergebnisse und Spektren

Die Metallophosphaalkene Ia,b reagieren mit $MeO_2C-C=C-CO_2Me$ (II) in Benzol bei 20°C zu den grünbraunen bzw. braunen Komplexes IIIa,b in 53 bzw. 48% Ausbeute. ³¹P-NMR-spektroskopisch sind keine Zwischenprodukte nachweisbar.

Konstitution und Konfiguration der Komplexe IIIa,b wurden durch Elementaranalysen und spektroskopische Methoden gesichert. In den IR-Spektren findet sich im Bereich für die Valenzschwingung terminaler Carbonylliganden nur noch eine starke Bande [IIIa: 1935; IIIb: 1944 cm⁻¹]. Die Valenzschwingung der acylischen CO-Gruppe des Metallacyclus wird bei 1616 cm⁻¹ als mittelstarke bis schwache Bande beobachtet. Die beiden Estergruppen geben sich durch Carbonylbanden bei 1742 und 1716 cm⁻¹ (IIIa) bzw. 1740 und 1717 cm⁻¹ (IIIb) zu erkennen. Das ³¹P{¹H}-NMR-Spektrum zeigt für beide Komplexe jeweils ein Singulett im Bereich von P=C-Doppelbindungen [7] ($\delta =$ 357.7 IIIa; 313.6 IIIb), die jedoch relativ zu den Resonanzen in den Edukten Ia,b ($\delta = 641.5$ bzw. 520.0) [2]

Correspondence to: Prof. Dr. L. Weber.

^{*} XIX. Mitteilung, siehe Lit. 1.

kräftig zu hohem Feld verschoben sind. Die ¹³C-NMR-Signale der terminalen Carbonylliganden und der acylischen CO-Funktionen in IIIa und IIIb werden als Dubletts bei δ 218.2 (² J_{PC} = 21.4 Hz bzw. 20.8 Hz) und δ 263.6 (${}^{2}J_{PC} = 16.8 \text{ Hz}$) bzw. δ 264.2 (${}^{2}J_{PC} = 13.7 \text{ Hz}$) Hz) registriert. Die ¹³C-Resonanzen der beiden chemisch und magnetisch verschiedenen Estercarbonylgruppen treten als Dubletts bei δ 166.3 (² $J_{PC} = 21.4$ bzw. 23.7 Hz) und als Singuletts bei $\delta = 164.2$ bzw. 164.3 auf. Die olefinischen Ringkohlenstoffatome geben zu Dubletts im Bereich von δ 156.3–163.6 (² J_{PC} = 13.8-37.3 Hz) Anlaß. Der IR- und NMR-Spektrenvergleich legt für die fünfgliedrigen Ringe IV [5a] und IIIa,b einen analogen Aufbau nahe.

Beide Verbindungstypen unterscheiden sich in der Natur der exocyclischen Doppelbindungen am Ringphosphoratom. Dubletts bei δ 176.4 (¹ $J_{PC} = 10.7$ Hz) und δ 180.8 (¹J_{PC} = 4.6 Hz) ordnen wir den ¹³C-Kernen der P=C-Funktion in IIIa und IIIb zu. Die Stereochemie an der P=C-Bindung läßt sich aus ¹H- und ¹³C-NMR-Daten ableiten. Die Singuletts der Methylestergruppen liegen in IIIa dicht beieinander ($\delta = 3.35$, 3.46; $\Delta \delta = 0.11$), während sie in IIIb deutlich stärker separiert sind ($\delta = 2.87$, 3.44; $\Delta \delta = 0.57$). Dies wird verständlich, wenn die der P=C-Bindung benachbarte Methylestergruppe zur Mitte des Phenylrings orientiert ist und von dessen Magnetfeld zusätzlich abgeschirmt wird. Die hieraus abzuleitende Z-Konfiguration an der P=C-Funktion wird durch ¹³C-NMR-Daten erhärtet. Es ist bekannt, daß Kerne in der Nachbarschaft des lone pairs viel stärker mit dem ³¹P-Kern koppeln als in der trans-Position. η^1 -gebundene Metallfragmente ändern hieran nichts wesentliches. In Ib mit E-Konfiguration [8] wird die Konstante ${}^{3}J_{PC}$ mit den ${}^{13}C$ -Kernen der Me₃Si-Gruppe zu 9.7 Hz bestimmt. Auch in Ia tritt die entsprechende Resonanz als Dublett $({}^{3}J_{PC} = 15.6 \text{ Hz})$ auf, während die dem lone pair abgewandte Me₃Si-Gruppe als Singulett beobachtet wird. Ein Dublett für die Me₃Si-Gruppe ($\delta = 0.4$; ${}^{3}J_{PC} = 4.9$ Hz) in IIIb ist daher am besten mit der cis-Position von Eisen und Silylgruppe vereinbar.

Das freie Elektronenpaar am Phosphoratom besetzt im Metallophosphaalken das HOMO und verleiht den Molekülen nucleophilen Charakter [2b]. Wir nehmen an, daß im ersten Schritt der Reaktion des P-lone pair mit einem π^* -Orbital der Dreifachbindung des elektronenarmen Alkins in Wechselwirkung tritt und dabei

das Intermediat A entsteht. Der nucleophile Angriff des carbanionischen Zentrums in A auf den positiv polarisierten Carbonylkohlenstoff eines CO-Liganden führt zum Ringschluß. Formal fungiert dabei das Metallophosphaalken als 1,3-Dipol. Der dabei entstandene η^{1} -P, η^{1} -C-Ligand besitzt die Strukturmerkmale eines 2-Phospha-1,3-butadiens. Dieser Prozeß wird bei IIIb noch von einer E/Z-Isomerisierung gefolgt, wie sie auch bei den Cycloaddukten vom Typ IV beobachtet wurde.

3. Experimenteller Teil

3.1. Darstellung von IIIa

Man rührt eine Lösung von 1.05 g (2.4 mmol) Ia und 0.34 g (2.4 mmol) Acetylendicarbonsäuredimethylester II in 30 ml Benzol 1 h bei 20°C. Die Reaktionslösung wird im Vakuum vom Lösungsmittel und flüchtigen Bestandteilen befreit. Durch Umkristallisieren des Rückstandes aus n-Pentan bei 4°C erhält man 0.74 g eines grünbraunen Pulvers. Gef.: C, 51.78; H, 6.69. C₂₅H₃₉FeO₆PSi₂ (578.55). ber.: C, 51.90; H, 6.79%.

IR (KBr): $\nu(CO_{term}) = 1935s; \nu(CO_{Ester}) = 1742m,$

1716m; $\nu(CO_{acyl}) = 1617 \text{w cm}^{-1}$. ¹H-NMR (C_6D_6 , 22°C): δ 0.21 (s, 9H, SiMe₃), 0.41 (s, 9H, SiMe₃), 1.57 (d, ⁴J_{PH} = 1.4 Hz, 15H, C₅Me₅), 3.35 (s, 3H, OMe), 3.46 (s, 3H, OMe).

¹³C{¹H}-NMR (C₆D₆, 22°C): δ 3.5 (s, SiCH₃), 10.1 $(s, C_5(CH_3)_5), 52.0 (s, CO_2CH_3), 52.1 (s, CO_2CH_3),$ (s, $C_5(CH_{3/5})$, J2.0 (s, $CO_2(H_3)$, J2.1 (s, $CO_2(H_3)$, 95.8 (s, $C_5(CH_3)_5$), 158.9 (d, ${}^2J_{PC} = 19.8$ Hz, P-C=C), 163.6 (d, ${}^1J_{PC} = 35.1$ Hz, P-C=C), 164.2 (s, P-C=C-C(O)), 166.3 (d, ${}^2J_{PC} = 21.4$ Hz, P-C-C(O)), 176.4 (d, ${}^1J_{PC} = 10.7$ Hz, P=C), 218.2 (d, ${}^2J_{PC} = 21.4$ Hz, CO_{term}), 263.6 (d, ${}^2J_{PC} = 16.8$ Hz, CO_{acyl}).

³¹P{¹H}-NMR (C_6D_6 , 22°C): δ 357.7 s. MS/EI (70 eV)): $m/e = 578 (M^+)$.

3.2. Darstellung von IIIb

Analog zur Darstellung von IIIa erhält man aus 1.00 g (2.3 mmol) Ib und 0.33 g (2.3 mmol) II 0.64 g (48%) IIIb in Form brauner dünner Nadeln. Gef.: C, 58.00; H, 6.18. C₂₈H₃₅FeO₆PSi (582.47) ber.: C, 57.73; H, 6.06%.

IR (KBr): $\nu(CO_{term}) = 1944s; \nu(CO_{Ester}) = 1740sh;$ 1717s; $\nu(CO_{acvl}) = 1616m \text{ cm}^{-1}$.

¹H-NMR (C_6D_6 , 22°C): δ 0.19 (s, 9H, SiMe₃), 1.63 (d, ${}^{4}J_{PH} = 1.5$ Hz, 15H, C₆Me₅), 2.87 (s, 3H, OMe), 3.44 (s, 3H, OMe), 6.96-7.44 (m, 5H, Ph).

¹³C{¹H} NMR (C₆D₆, 22°C): δ 0.4 (d, ⁴J_{PC} = 4.9 Hz, SiCH₃), 9.9 (s, $C_5(CH_3)_5$), 51.6 (s, OMe), 51.9 (s, OMe), 94.9 (s, C₅(CH₃)₅), 126.3 s, 126.4 s, 127.6 s, 128.2 s (o,m,p-Phenyl-C), 143.8 (d, ${}^{3}J_{PC} = 17.8$ Hz, i-Phenyl-C), 156.3 (d, ${}^{2}J_{PC} = 13.8$ Hz, P-C=C), 162.9 (d, ${}^{1}J_{PC} = 37.3$ Hz, P-C=C), 164.3 (s, P-C=C-C(O)),

166.3 (d, ${}^{2}J_{PC} = 23.7$ Hz, P-C-C(O)), 180.8 (d, ${}^{1}J_{PC} = 4.6$ Hz, P=C), 218.2 (d, ${}^{2}J_{PC} = 20.8$ Hz, CO_{term}), 264.2 (d, ${}^{2}J_{PC} = 13.7$ Hz, CO_{acyl}). ³¹P{¹H}-NMR (C₆D₆, 22°C): δ 313.6 s. MS/EI (70 eV): m/e = 582 (M⁺).

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn, dem Fond der Chemischen Industrie sowie der BASF AG Ludwigshafen für die großzügige Unterstützung dieser Arbeit.

Literatur

1 XIX. Mitteilung: L. Weber, O. Kaminski, H.-G. Stammler und B. Neumann, Z. Naturforsch., Teil B, 48 (1993) 1784.

- 2 (a) D. Gudat, E. Niecke, A.M. Arif, S. Quashie und A.H. Cowley, *Organometallics*, 5 (1986) 593; (b) E. Niecke, H.-J. Metternich, M. Nieger, D. Gudat, P. Wenderoth, W. Malisch, C. Hahner und W. Reich, *Chem. Ber.*, 126 (1993) 1299.
- 3 L. Weber, E. Lücke und R. Boese, Chem. Ber., 123 (1990) 23.
- 4 L. Weber, A. Rühlicke, H.-G. Stammler und B. Neumann, Organometallics, 12 (1993) 4653.
- 5 (a) L. Weber, M. Frebel und R. Boese, New J. Chem., 13 (1989) 303; (b) L. Weber, M. Frebel und R. Boese, Chem. Ber., 122 (1989) 2091.
- 6 M.T. Ashby, J.H. Enemark, Organometallics, 6 (1987) 1323.
- 7 (a)S. Lochschmidt und A. Schmidpeter, *Phosphorus and Sulfur*, 29 (1986) 73; (b) R. Appel, in M. Regitz und O.J. Scherer (Hrsg.), *Multiple Bonds and Low Coordination in Phosphorus Chemistry*, S. 157.
- 8 L. Weber, A. Rühlicke und H.-G. Stammler, unveröffentlicht.